血红素是血红蛋白必不可少的组成部分,其生物合成与降解是生物体中最重要的代谢途径之一。血红素的生物合成过程需要经历八个酶促反应(图1),主要分为以下四个阶段:
1.δ-氨基乙酰戊酸(ALA)的生成
δ-氨基乙酰丙酸合成酶(ALAS)催化甘氨酸和琥珀酰辅酶A缩合,生成δ-氨基乙酰戊酸(ALA)
[1]。
2.胆色素原(PBG)的生成
在ALA脱水酶(ALAD)作用下,两分子ALA脱水缩合生成胆色素原(PBG)
[2]。
3.尿卟啉原Ⅲ(Uro III)和粪卟啉原Ⅲ(Copro III)的生成
四分子PBG经卟啉原脱氨酶(PBGD)催化生成不稳定的羟甲基胆素(HMB)
[3],HMB在尿卟啉原III合成酶(UROS)作用下,进一步环化为尿卟啉原Ⅲ(Uro III)
[4],当无UROS存在时,HMB会环化为尿卟啉原I
[5]。Uro III再经尿卟啉原III脱羧酶(UROD)催化,四个乙酸侧链脱羧变成甲基,生成粪卟啉原III(Copro III)
[6]。
4.血红素的生成
在粪卟啉原III氧化酶(CPO)作用下,Copro III转化成原卟啉原IX
[7,8],再经原卟啉原氧化酶(PPO)催化脱氢生成原卟啉IX(PPIX)
[9,10],最后在亚铁螯合酶(FC)催化下和亚铁离子结合,生成血红素
[11]。
图1 血红素的生物合成过程
血红素加氧酶(HO)是血红素降解代谢过程中的限速酶
[12]。这种酶能将血红素降解为一氧化碳(CO)、游离铁和胆绿素,其中胆绿素通过胆绿素还原酶(BR)进一步转化为胆红素
[13]。胆红素是胆汁中的主要色素,当胆红素进入肝脏后,经UDP葡糖醛酸转移酶(UGT1A1)催化,生成葡萄糖醛酸胆红素
[14],最终在肠道微生物作用下,转化成胆素原、粪胆素原和尿胆素原(图2),随粪便排出体外。
图2 血红素的降解过程
百灵威可提供10种Frontier品牌
血红素的生物合成与降解所需产品,助力该领域科学研究。
血红素的生物合成相关化合物
由于卟啉原中间体不稳定,在空气中易氧化为相应的卟啉类似物,所以Frontier提供的是与卟啉原相对应的卟啉化合物。
品名 | CAS | 货号 |
δ-Aminolevulinic acid hydrochloride, >98%
5-氨基乙酰丙酸盐酸盐
|
5451-09-2
| A167
|
Coproporphyrin III dihydrochloride, >97%
粪卟啉二盐酸盐
| 14643-66-4
| C654-3
|
Hemin
血红素/卟啉铁
| 16009-13-5
| H651-9
|
Porphobilinogen, >97%
5-(氨基甲基)-4-(羧基甲基)吡咯-3-丙酸
| 487-90-1
| P226
|
Protoporphyrin IX, 97%
原卟啉 IX
| 553-12-8
| P562-9
|
血红素的降解相关化合物
品名 | CAS | 货号 |
Biliverdin hydrochloride
胆绿素盐酸盐
| 856699-18-8
| B655-9
|
Bilirubin
胆红素
| 635-65-4
| B584-9
|
Bilirubin conjugate
二牛磺酸胆红素钠盐/缀合胆红素
|
68683-34-1
| B850
|
Stercobilin hydrochloride (mixture of isomers)
尿胆素盐酸盐
| 34217-90-8
| S594-9
|
Urobilin hydrochloride (mixture of isomers)
尿胆素Ⅸ盐酸盐
|
28925-89-5
| U590-9
|
参考文献
- Ferreira, G.C., Gong, J. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J Bioenerg Biomembr 27, 151–159 (1995).
- Jaffe, E.K. Porphobilinogen synthase, the first source of Heme’s asymmetry. J Bioenerg Biomembr 27, 169–179 (1995).
- Grandchamp, B., De Verneuil, H., Beaumont, C., Chretien, S., Walter, O. and Nordmann, Y. (1987), Tissue-specific expression of porphobilinogen deaminase. European Journal of Biochemistry, 162: 105-110.
- Battersby, A., Fookes, C., Matcham, G. et al. Biosynthesis of the pigments of life: formation of the macrocycle. Nature 285, 17–21 (1980).
- Paul R. Ortiz de Montellano (2008). “Hemes in Biology”. Wiley Encyclopedia of Chemical Biology. John Wiley & Sons.
- Straka, J.G., Kushner, J.P Purification and characterization of bovine hepatic uroporphyrinogen decarboxylase. Biochemistry 1983, 22, 20, 4664-4672.
- T. Yoshinaga, S. Sano Coproporphyrinogen oxidase: I. Purification, properties, and activation by phospholipids. J. Biol. Chem., 255 (10) (1980), pp. 4722-4726.
- T. Yoshinaga, S. Sano Coproporphyrinogen oxidase: II. Reaction mechanism and role of tyrosine residues on the activity. J. Biol. Chem., 255 (10) (1980), pp. 4727-4731.
- Dailey HA. 1990. Conversion of coproporphyrinogen to protoheme in higher eukaryotes and bacteria: Terminal three enzymes. In Biosynthesis of heme and chlorophylls (ed. Dailey HA), pp. 123–161. McGraw-Hill, New York.
- Dailey, T. A. & Dailey, H. A. Human protoporphyrinogen oxidase: Expression, purification, and characterization of the cloned enzyme. Protein Sci. 5, 98–105 (1996).
- Lecerof, D.; Fodje, M.; Hansson, A.; Hansson, M.; Al-Karadaghi, S. (March 2000). “Structural and mechanistic basis of porphyrin metallation by ferrochelatase”. Journal of Molecular Biology. 297 (1): 221–232.
- Kikuchi G, Yoshida T, Noguchi M (2005). “Heme oxygenase and heme degradation”. Biochem. Biophys. Res. Commun. 338 (1): 558–567.
- Ahmad Z, Salim M, Maines MD (Mar 2002). “Human biliverdin reductase is a leucine zipper-like DNA-binding protein and functions in transcriptional activation of heme oxygenase-1 by oxidative stress”. The Journal of Biological Chemistry. 277 (11): 9226–32..
- Jansen, P.L.M., Mulder, G.J., Burchell, B. and Bock, K.W. (1992), New developments in glucuronidation research: Report of a workshop on “Glucuronidation, its role in health and disease”. Hepatology, 15: 532-544.
推荐阅读
用于催化的卟啉衍生物